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Abstract. We investigate the control of spatiotemporal chaos by external forcing at equidistant points
(pinning sites) in one-dimensional systems. A monotonic decrease of the minimum distance between pinning
sites versus the spatial measure entropy (in the absence of forcing) can be obtained for an appropriate choice
of the forcing procedure. Such a relation between a feature for control and the disorder of the uncontrolled
system is shown for four systems: binary cellular automata, coupled logistic equations, a stick-slip model
and coupled differential equations.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 89.75.-k Complex systems

1 Introduction

Since about one decade, control of spatiotemporal chaos
by manipulating single points (pinning sites) has been in-
vestigated [1–12]. In the present work we are concerned
with the determination of the minimum distance dcrit be-
tween equidistant pinning sites for the control of chaotic
one-dimensional systems. The systems considered here are
discrete (or discretized) in time, space and phase variables.
Our aim is to look for forcing procedures at the pinning
sites, such that dcrit can be determined from a quantity
that characterizes the disorder of the system. As a quan-
tity with this property we consider in this work the spatial
measure entropy [13] defined as

S = − 1
X

kX∑

j=1

pj logk pj . (1)

S is evaluated in the absence of forcing at the pinning
sites. For each time step n = 1, 2, ..., T we regard spatial
cells i = 1, 2, ..., L. Each cell can be in k states. Blocks
consisting of X adjacent cells (at fixed values of i and n)
can thus be in kX states, each one with probability pj (j =
1, 2, ..., kX). The consideration here of the spatial measure
entropy is to be contrasted with previous works on coupled
map lattices [10,11], in which pinning was related to the
Lyapunov exponents.

In Section 2, we consider cellular automata with bi-
nary phase variables, as proposed by Wolfram [13]. In
the third (coupled logistic maps), in the fourth (stick-
slip model) and in Section 5 (coupled Lorenz equations)
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the phase variables are discretized by dividing the interval
between the minimum and the maximum of each variable
into k equal intervals; the variables are set constant within
each of these intervals.

We use periodical boundary conditions for the phase
variables xn(i), i.e. xn(i + L) = xn(i). Calculations are
performed starting with values of x1(i) chosen randomly
and equally distributed within the sets under considera-
tion. Both dcrit and S are determined out of 100 runs with
different initial conditions. All evaluations are started in
each run after 3000 time steps in order to allow transients
to die away. Any value of T given below includes these
3000 steps. The following criterium is used for the de-
termination of dcrit: for d < dcrit, the system becomes
periodical everywhere and for all runs; for d ≥ dcrit, the
system remains chaotic in at least one cell in some run.

The rationale of this work is the following. By common
sense one expects that a larger S (as a measure of disor-
der in the absence of control) requires denser control, i.e.
smaller values of dcrit. Thus, one expects a monotonously
decreasing dependence of dcrit versus S. We ask if such a
dependence actually holds.

2 Binary cellular automata

As simplest examples for spatially extended chaotic sys-
tems, we consider binary (k = 2) Wolfram-automata [13].
We assume that xn+1(i) is a function Φ of ρ, where ρ is
the sum of the values xn(m) for m = i− 2, i − 1, i, i + 1,
i+2 (totalistic rule with neighbourhood r = 2). The rules
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Fig. 1. (a) Minimum distance between pinning sites dcrit versus the spatial measure entropy S for all totalistic Wolfram
automata leading to chaos for k = r = 2; each point in the figure corresponds to one automaton rule; the pinning sites are
forced by setting 001100... if initially 0 and 110011... otherwise. L = 5000, T = 30 000, X = 5. (b) As (a), but setting the
rule with code K = 24 at the pinning sites. (c) As (a), but forcing the pinning sites with 010101... if initially 0 and 101010...
otherwise.

Fig. 2. (a) Illustration of an uncontrolled Wolfram automaton (r = k = 2, rule K = 28). (b) Control with d = 2. (c) Control
with d = 4. (d) Failure of control with d = dcrit = 5.

are coded by

K =
5∑

ρ=0

2ρΦ(ρ). (2)

Chaotic patterns are obtained for the 16 cellular automata
having codes K = 2, 6, 10, 12, 14, 18, 22, 26, 28, 30, 34,
38, 42, 44, 46 and 50.

We consider the following procedures for forcing at the
pinning sites; (i) setting the value 0; (ii) setting the value 1;
(iii) setting 000... after 0 and setting 111... after 1; (iv) set-
ting 0101... if the first value is 0 and setting 1010... if the
first value is 1; (v) setting 00110011... if the first value is
0 and setting 11001100... if the first value is 1; (vi) setting
000111000111... if the first value is 0 and 111000111000...
if the first value is 1; (vii) applying rules which taken alone
yield homogeneity or periodicity (for example: K = 4, 8,
24, 32, ...). For the cases (i) through (vi) there is no feed-
back of the system on the forcing; for the case (vii) there
is feedback since the values assigned to each cell depend
on the states in the neighbourhood, regardless of whether
the cell is a pinning site or not.

Out of the forcing procedures (i) through (vii) given
in the preceding paragraph, we found that one procedure,
namely (v), i.e. setting 001100... or 110011..., yielded a
monotonic decrease of dcrit vs. S. This is shown in Fig-
ure 1a. For comparison, we illustrate in Figure 1b (forcing
with rule 24) and in Figure 1c (forcing with 0101... or
1010...) cases of non-monotonicity.

The meaning of dcrit is illustrated in Figure 2 for the
rule K = 28. No control was performed in Figure 2a.
Figures 2b through 2d show the outcome with increasing

values of d. Control was performed using procedure (ii).
Periodicity is obtained for d = 2 (Fig. 2b), d = 3 and
d = 4 (Fig. 2c), whereas chaos remains for d = dcrit = 5
(Fig. 2d).

By changing T and L we found that the dcrit(S)-
dependence saturates for L > 4000 and T > 20 000.
Figure 3a and 3b illustrate how decreasing L or T
below these saturating values causes changes of the
dcrit(S)-dependence. The choice of X does change the
dcrit(S)-dependence but does not affect monotonicity, as
illustrated in Figure 3c.

Note that by setting r = 2, information can flow across
the pinning sites. Thus, control is not caused by subdivi-
sion into short automata with boundary conditions im-
posed at the pinning sites. This allows e.g. the CA in Fig-
ure 4d to display a similar chaotic pattern as the CA in
Figure 4a.

3 Coupled logistic equations

Lattices of coupled maps are widely used, simple mod-
els for the study of spatiotemporal chaos [7–12,14–19]. A
prototype (see [11,12,14–19]) is

xn+1(i) = Fn(i − 1, i, i + 1), (3)

where

Fn(i − 1, i, i + 1) = (1 − ε)f [xn(i)]

+
ε

2
{f [xn(i − 1)] + f [xn(i + 1)]} . (4)
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Fig. 3. Control of Wolfram automata. (a) As Figure 1a, but with different automaton lengths L; T = 30 000. (b) As Figure 1a,
but with varying total times T ; L = 600. (c) As Figure 1a, but with varying block sizes X; L = 5000, T = 30 000.
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Fig. 4. Control of a coupled map lattice. (a) S versus the coupling parameter ε for different block sizes X. (b) Minimum
distance dcrit between pinning sites versus S for different X.

As map f we use the chaotic logistic equation f(x) =
4x(1−x). ε is a parameter describing the coupling between
neighbouring cells. We set pinning sites as in [8]:

xn+1(i) = Fn(i − 1, i, i + 1) +
L/d∑

j=0

δ(i − dj − 1)gn, (5)

where δ(m) = 1 if m = 0 and δ(m) = 0 otherwise. gn is
given by

gn = (1 − ε)q(i) +
ε

2
q(i − 1) +

ε

2
q(i + 1). (6)

Here, q(m) = pxn(m)[xn(m) − ξ]. p is the feedback
strength and ξ is a reference state, which is set to the
unstable fixed point of the logistic equation, i.e. ξ = 3/4.

Spatial measure entropies are determined by discretiz-
ing the xn(i) into k states, as described in the introduc-
tion. We found that S varied less than 6% when varying
k between 2 and 20; this weak dependence of S on k facil-
itates our choice of k; we set k = 10. The dynamics and
thus the entropy was varied by changing the coupling pa-
rameter ε. We set p = 2.65. The ε-values in the systems in
which we carried out control are those of the abscissa of
Figure 4a, excluding the interval (0.1, 0.2), within which
the behaviour without control is periodical, as indicated
by the downwards peak of S.

Figure 4b shows a monotonic decrease of dcrit versus S.
The choice of X here does not alter the monotonicity. In
fact, X only shifts the dcrit(S)-curves horizontally as a
result of the vertical shifts (on varying X) in Figure 4a.
Note that the gap around S = 0.87 in Figure 4b corre-
sponds to the downwards peaks in Figure 4a (non-chaotic
behaviour in the absence of control).

The dcrit(S)-curves retain their monotonicity, but are
shifted by changing T or L. We have set here T = 30 000
and L = 600, which are values for which saturation of
dcrit(S) with respect to T and L occurs.

4 A stick-slip model

A simplified description of earthquakes is obtained with
a stick-slip model (see [20]), which is constructed here as
follows. A one-dimensional array of blocks connected by
springs (continental plate) is placed over the rigid oceanic
plate. The variable xn(i) is the potential energy of block i
at time n. A block slips if xn(i) ≥ 2, xn(i) becoming
zero after slipping and delivering the energy (xn(i)−σ)/2
to each neighbour; σ is the energy dissipation. An earth-
quake occurs if at least one block slips. After the start of
an earthquake all blocks come to rest due to dissipation;
this relaxation may last several time steps, corresponding
to seconds or minutes in nature. It is assumed that af-
ter relaxation, i.e. after an earthquake has finished, the
relative movement of the plates causes an increase of the
energy of each block by a constant value, which we set
equal to 1. This increase in energy takes place during one
time step in the simulations, but lasts years or more in
nature. Thereafter, slipping and relaxation occur again.
The process is described by the following map:

xn+1(i) = x+
n (i) + x−

n (i) + xo
n(i). (7)

x+
n (i) and x−

n (i) are the contributions from the block at
the right and left, respectively; xo

n(i) is the contribution
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Fig. 5. Control of stick-slip processes. (a) Entropy S vs. dissipation parameter σ; (b) dcrit vs. S.
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Fig. 6. Control of coupled differential equations. (a) Entropy S vs. diffusion coefficient D; (b) dcrit vs. S.

of the considered block itself

x±
n (i) =

{
[xn(i ± 1) − σ]/2 , xn(i ± 1) ≥ 2

0 , else
(8)

x0
n(i) =

{
xn(i) , xn(i) < 2

0 , else
. (9)

For the calculation of S with equation (1) we discretise the
potential energy as described in Section 1, setting k = 10.
As initial conditions we set randomly chosen, equally dis-
tributed values 0 ≤ x1(i) < 2. As in the case of the cou-
pled logistic equations in Section 3, we found that S is
only slightly affected by the choice of k around our chosen
value k = 10. Figure 5a shows S versus the dissipation σ
for different X . The downwards peaks in this figure indi-
cate periodical islands; the intervals of σ corresponding to
these peaks are, of course, not subjected to control.

Control is performed by setting — at the pinning sites
— the average of xn(i) over all i; this is done at each time
step during earthquakes. The idea behind this averaging is
to drive the system into a state that is closer to homogene-
ity. Using this procedure, we obtain nearly monotonously
decreasing dcrit(S)-relations, as shown in Figure 5b. Note
that X only shifts the dcrit(S)-curves horizontally, cor-
respondingly to the vertical shifts in Figure 5a, preserv-
ing the nearly monotonic behaviour. We set L = 600 and
T = 45 000, for which saturation of dcrit with respect to
L and T occurs.

5 Coupled differential equations

We consider diffusively coupled Lorenz equations, as in [6].
In a spatially discrete system, we write for each cell i the
Lorenz equations with a coupling term C:

dx(i)/dt = σ(y(i) − x(i)) + C(i)

dy(i)/dt = rx(i) − x(i)z(i) − y(i) + C(i)

dz(i)/dt = −bz(i) + x(i)y(i) + C(i) (10)

where we assumed, as in [6], that coupling occurs only via
the y(i). We set

C(i) = D
[
0.5y(i − 2) + y(i − 1) − 3y(i)

+ y(i + 1) + 0.5y(i + 2)
]
, (11)

which is a particular mask for the discretization of the
Laplace operator [21]. D is the diffusion coefficient. In ad-
dition, time is discretized by replacing the left-hand sides
of equations (10) by the difference quotients [ζn+1(i) −
ζn(i)]/∆t, ζ = x, y, z. In this way we obtain coupled three-
dimensional time-discrete maps. Setting σ = 10, r = 28,
b = 8/3 and ∆t = 0.01, spatiotemporal chaos is obtained.

We determine S by considering the y(i) only. We set
k = 10; as in the cases in the previous sections, the results
were not significantly affected by this choice. Figure 6a
shows how S is changed by changing D. Control is per-
formed by replacing r = 28 into r = 0.5 at the pinning
sites. Note that if r = 0.5 was set everywhere, the fixed
point attractor (0, 0, 0) would be reached by each cell.
dcrit versus S (Fig. 6b) is nearly monotonously decreasing.
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We set L = 600 and T = 30 000, for which saturation of
dcrit with respect to L and T occurs. The choice of X shifts
dcrit(S) horizontally, as expected from the vertical shifts
in Figure 6a. Note in Figure 6b that in a few cases values
of dcrit differing by 1 are obtained for the same S; this is
a result of varying sets of initial conditions.

6 Conclusions

In previous works the minimum distance dcrit of pinning
sites was determined either by numerical optimization sep-
arately for each set of control parameters, or analytically
with a linear approximation around the reference state ξ
for coupled map lattices. In the analyses of these lat-
tices [10,11], control was related to the Lyapunov expo-
nents of the system.

In the present work, we presented an alternative ap-
proach by relating the spatial measure entropy S (in the
absence of control) to the minimum pinning distance dcrit

for control. We showed a monotonic decrease of dcrit ver-
sus S for four different systems: Wolfram’s automata,
coupled logistic equations, a tectonic model and coupled
Lorenz equations. This monotonic dependence saturates
for sufficiently large times T and lengths L. We are as yet
unable to explain the existence of forcing procedures at
the pinning sites for which no monotonicity is obtained,
as we found in several cases for Wolfram’s automata (see
e.g. Figs. 1b and 1c). Therefore, an open future task is to
find necessary conditions that the forcing must fulfill for
monotonicity to hold.

In cases in which one obtains fluctuations of dcrit(S)
(Fig. 5b around S = 0.55, S = 0.61 and S = 0.69, as
well as Fig. 6b around S = 0.4), one should obviously
perform control with the minimum dcrit within the fluc-
tuation range.

We must remark that because of limitations in com-
puting time, we did not obtain saturation of S with respect
to X . However, this did not turn out to be a drawback,
since we found that monotonicity is independent of the
choice of X for all investigated models.

While it is reasonable to determine control conditions
by analyzing the perturbed system, as e.g. in [10,11]), we
found here a relationship of dcrit with a property of the
unperturbed system, namely S. This is an empirical result
that calls for further investigation.

Another future task concerns the spatial distribution
of pinning sites. We have set here (as e.g. in [8]) equidistant
pinning sites. In contrast, it is promising to consider the
results of Grigoriev et al. [10] for coupled map lattices: an
appropriate choice of non-equidistant sites allows control
with a substantially lower pinning density.

A.G. and M.M. thank the Centre for Mathematical Modelling
(Santiago, Chile) for hospitality and financial support.
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